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 Abstract—Home monitoring requires measuring the 

physiological and behavioral signals without impairing a subject’s 
everyday life. This research presents an integrated and 
noncontact approach for obtaining simultaneous physiological 
and behavioral signals of recumbent humans in beds using a 
home-monitoring application. In the proposed approach, a 
fabric-sheet unified sensing electrode (FUSE) obtains 
physiological signals by recording the electrocardiogram (ECG), 
chest and abdominal respiratory movements (RMs), and 
ballistocardiogram (BCG). The FUSE also detects the behavioral 
signals of body proximity (BPx) and lateral/supine lying postures. 
A prototype system with FUSE was validated in a short-term 
experiment and 6-h overnight measurements on two different 
groups composed of seven lying subjects. The results confirmed 
that the approach senses each signal independently and records 
the ECG, RMs, BCG, and BPx signals simultaneously. The mean 
sensitivities of the R and T waves of the ECG during sleep were 
86.1% and 88.0%, respectively, whereas those of the chest and 
abdominal RMs were 90.7% and 90.1%, respectively. Although 
our prototype system has room for improvement, the results 
suggest that our approach enables the unconstrained, nocturnal 
monitoring of the physiological and behavioral signals in 
recumbent humans. The at-home monitoring of the physiological 
and behavioral signals is expected to contribute to cost-effective 
personalized healthcare in the future. This noncontact and 
easy-to-install system for in-bed measurements can facilitate a 
new era of home monitoring. 
 

Index Terms—Capacitive electrocardiography (cECG), 
respiratory movements, ballistocardiogram (BCG), body 
proximity, lying posture, home monitoring, unobtrusive 
measurements, vitals monitoring, fall prevention, pressure ulcer 
prevention 
 

I. INTRODUCTION 
CCORDING to a 2007 United Nations demographic 
survey, the proportion of the world’s population aged 60 
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and above is expected to grow by up to 21.8% between 2007 
and 2050 [1]. Given the rapidly aging population [2] along with 
the advances in information and communication technologies 
and artificial intelligence, the physiological and behavioral 
signals will be realistically monitored at home in the near future. 
Such at-home monitoring would play an important role in both 
preventive daily healthcare and post-hospital medical care [3], 
[4]. The growing number of patients with chronic 
cardiorespiratory conditions, such as heart failure [5], atrial 
fibrillation [6], and sleep apnea [7], gives more urgency to this 
expectation. The evidence from clinical trials demonstrates that 
management programs, including home monitoring, improve 
clinical outcomes, particularly for patients hospitalized with 
heart failure (HF) [8]. The United States Veterans Health 
Administration introduced a large-scale (national), 
enterprise-wide home telehealth program and found that it 
effectively managed chronic care patients at a reasonable cost 
in both urban and rural settings [9]. 

Electrocardiograph (ECG) signals are among the most 
crucial physiological signals to be monitored because 
cardiovascular disease (CVD) is the leading cause of death in 
the United States [5] and coronary heart disease (CHD) is the 
leading cause of death worldwide [10]. Abnormalities in the 
baseline ECG are strongly associated with subsequent CVD 
and CHD mortalities of all types [11]. In addition to ECG 
signals, it is important to monitor the respiratory movements 
(RMs) because sleep-disordered breathing is associated with 
acute unfavorable effects on cardiovascular physiology [7]. 
Bennet et al. [12] studied the recumbent nocturnal 
physiological patterns of older adults discharged to their homes 
after hospitalization for HF. Their findings indicated that 
respiratory rate (RR) is the most important risk-adjusted 
indicator of readmission for HF [12]. The ballistocardiogram 
(BCG) is another important physiological signal because the 
interval between the R-wave peak of the ECG and the J-wave 
peak of the BCG (i.e., the RJ interval) is strongly correlated 
with the heart’s pre-ejection period [13], [14], which is a useful 
indicator of the heart’s contractility [15] and can be used to 
determine left ventricular performance in patients with CVD 
[16]. In addition, the BCG might provide the relative stroke 
volume of the heart [14], [17] and/or the systolic blood pressure 
[18]. 

When monitoring behavioral signals, it is essential to 
monitor bed-entering and bed-exiting body movements because 
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falls commonly occur around beds in both hospitals and 
residential care facilities [19]–[21], especially during attempts 
to enter or leave the bed [22], [23]. Elderly people worldwide 
are vulnerable to falls and fall-induced injuries [24], and the 
burden and cost of falls are expected to increase as populations 
age [25]–[27]. A signal that reflects body posture could also 
prevent the development of pressure ulcers in immobilized 
patients or frail elderly patients in home care settings. Pressure 
ulcers can cause a number of adverse health outcomes such as 
increased morbidity and mortality and reduced quality of life. 
Pressure ulcers also represent a significant financial burden to 
the National Health Service [28]–[30]. Moreover, by 
monitoring body posture signals, caregivers could evaluate 
changes in the sleeping postures of patients with obstructive 
sleep apnea (OSA). This is important because OSA events 
occur more frequently and severely in the supine posture 
compared to in other postures [31], [32]. 

During home monitoring, patients’ physiological and 
behavioral signals must be measured without disrupting their 
everyday lives using ambient and unobtrusive methods. 
Moreover, for the monitoring equipment to be easily introduced 
and maintained, it will likely be necessary to integrate several 
measurement methods. Based on these considerations, we 
propose an integrated noncontact approach for in-bed 
measurements of physiological and behavioral signals, namely: 
ECG, RM, BCG, body proximity (BPx), and lying posture (LP). 
The approach is based on a newly devised fabric-sheet unified 
sensing electrode (FUSE). The viability of the proposed 
approach is tested using a prototype measurement device and 
pilot FUSE in both brief and prolonged laboratory experiments.  

II. RELATED WORKS  
Many noncontact in-bed measurement methodologies have 

been proposed for monitoring physiological and/or behavioral 
signals [33]. Capacitive electrodes [34], [35] are promising 
devices for biopotential measurements, particularly ECG 
measurements [36], [37]. Capacitive electrodes made of 
conductive fabric and placed under a bed sheet can also 
measure RMs [38], [39]. Capacitive electrodes can also be used 
to measure ECG (cECG) simultaneously with LP or BPx [40], 
[41]. Thus, cECG and a second physiological or behavioral 
signal were successfully detected in the above studies; however, 
the simultaneous detection of three or more signals has not yet 
been reported.  

When the target application allows the ECG to be substituted 
by another cardiomechanical signal (e.g., BCG or 
seismocardiogram), piezoelectric or acceleration sensors are 
usually used [42]. These sensors can measure multiple signals 
in the absence of ECG signals [43]–[46], and some proposed 
sensor systems are in the clinical validation phase. Therefore, if 
a piezoelectric or acceleration sensor could be developed from 
the same conductive fabrics as used in conventional capacitive 
electrodes and combined with a capacitive electrode, we could 
realize a large-scale, high-integrity tool for measuring 
physiological and behavioral signals. 

III. MATERIALS AND SYSTEMS 

A. Fabric-Sheet Unified Sensing Electrode (FUSE) 
The FUSE was designed for simultaneous measurements of 

cECG, BPx, RM, and BCG signals. The FUSE is placed under 
the bed sheet, beneath the back of the lying subject. To prevent 
sleep disruption, the FUSE is constructed from thin, soft 

 
 

 (a) Cross-sectional side-view   (b) Top-view configuration of the FUSE and block diagram  
 configuration of the FUSE of the proposed measuring system 
 
Fig. 1. The proposed measuring system. (a) Cross-sectional configuration of the FUSE. The top layers (1) and (2) are the electrodes for cECG measurement, 
and layers (6) and (7) are driven shields that receive the output of the bootstrapped voltage followers as feedback. The electrodes are doubly shielded by the 
third and fifth layers of the circuit ground (5) which also detect the BCG. Additional outer electrodes (3) and (4) detect the BPx and RM signals combined with 
the circuit ground (5). (b) Top-view configuration of the FUSE and block diagram of the proposed measuring system. The FUSE is placed under the bed 
sheet with the upper outer electrode (3) positioned beneath the upper edges of both shoulders. The cECG detection system comprises two bootstrapped voltage 
followers, an instrumentation amplifier with DC suppression, filters, and amplifiers. The BPx detection circuit consists of an astable multivibrator, a frequency 
divider, an F/V converter, and a buffer. The RM and BCG signals are derived from a common BPx signal through corresponding bandpass filters. 
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materials (conductive fabric and insulating textiles; see Fig. 1). 
The laminated structure (Fig. 1(a)) suppresses common-mode 
noise and electromagnetic disturbance [47], [48] in the cECG 
measurements and mitigates the interference between the 
cECG and other measured signals. The inner electrodes (1) and 
(2) in Fig. 1 were introduced only for cECG measurements and 
are arranged in parallel up and down the subject’s heart. The 
driven shields (6) and (7) surrounding each inner electrode are 
connected to the output terminals of separate bootstrapped 
voltage followers. The signal ground layer (5) provides double 
shielding to both sets of the inner electrode and a driven shield. 
Layer (5) functions as a capacitive ground (cGND) when 
coupled with the conductive trunk or upper body of the lying 
subject. It also plays the role of two capacitive sensors in 
combination with the outer electrodes (3) and (4). The outer 
electrodes are placed at the shoulder and lower back of the 
subject for independent BPx and RM measurements of the 
chest and abdomen. The capacitive sensor, including the outer 
electrode (3), is intended for BCG measurements. To prevent 
electrode displacement and overlap during repeated body 
movements such as rolling, the electrodes and shielding 
structures are unified into a unit on a base sheet constructed of 
insulating textile. 

B. cECG Measurement 
In our proposed layout, the inner electrodes coupled to the 

upper body through the subject’s clothing are considered as two 
capacitive couplings with capacitances C1 and C2, as shown in 
Fig. 2(a). According to the corresponding connection in Fig. 
1(b), the cECG is passively measured as the difference between 
the potentials at coupling points 1 and 2 (vcECG(1) and vcECG(2), 
respectively). To suppress the voltage drops from vECG(1) to 
vcECG(1) and from vECG(2) to vcECG(2), voltage followers with high 
input impedance are typically placed at the front ends of the 
following detection circuit [37], [49]. Here, we installed 
bootstrapped voltage followers at the front ends; these voltage 
followers maintain high input impedance only to AC signals 
and shorten the baseline restoration time after body movements 
such as rolling [39]. The frequency band of the cECG was set at 
0.5–100 Hz, and the amplifier gain was set to 60 dB.  

C. Measurements of BPx, LP, RM, and BCG 
The outer electrodes and signal ground layer, which are 

coupled to the upper body through the subject’s clothing, can be 
deemed as three capacitive couplings with capacitances CBPx(3), 
CBPx(4), and CG, as shown in Fig. 2(b). In the upper panel of Fig. 
1(b), series-connected capacitors CBPx(3) and CG are 
incorporated in an astable multivibrator commonly used in 
BPxchest, RMchest, and BCGchest detection. The multivibrator 
oscillates at a specific frequency depending on the net 
capacitance Cnet(3) of the series-connected capacitor. When 
CBPx(3) << CG in the FUSE, Cnet(3) can be approximated by 
CBPx(3), as shown in (1): 

 𝐶𝐶net(3) =
𝐶𝐶BPx(3)𝐶𝐶G

𝐶𝐶BPx(3)+𝐶𝐶G
=  

𝐶𝐶BPx(3)

1+ 
𝐶𝐶BPx(3)
𝐶𝐶G

 ≈  𝐶𝐶BPx(3). (1) 

The oscillatory frequency fosc(3) of the multivibrator depends on 
CBPx(3): 

 𝑓𝑓osc(3) = 𝑘𝑘osc
𝑅𝑅3𝐶𝐶net(3)

≈ 𝑘𝑘osc
𝑅𝑅3𝐶𝐶BPx(3)

, (2) 

where R3 is the resistance (Ω) in Fig. 2(b), and kosc is a constant 
determined by the power-supply voltage and threshold voltages 
of the Schmitt inverter integrated circuit (National 
Semiconductor, LM231) in Fig. 2(b). The output voltage Vout(3) 
of the frequency-to-voltage (F/V) converter is proportional to 
the input frequency fosc(3) as follows: 

 𝑉𝑉out(3) = 𝑘𝑘fv ∙ 𝑓𝑓osc(3) ≈
𝑘𝑘fv𝑘𝑘osc
𝑅𝑅3𝐶𝐶BPx(3)

, (3) 

where the proportionality factor kfv is determined by the 
resistance and capacitance in the F/V converter circuit. To 
calculate CBPx(3), we need the permittivity of the coupling 
ε [F·m], the coupling area AS(3) [m2], and the coupling distance 
dS(3) [m]. The coupling distance is the sum of three 
time-varying distances d(3)BPx, ∆d(3)RM, and ∆d(3)BCG. 
Specifically, CBPx(3) is calculated as 

 𝐶𝐶BPx(3) = 𝜀𝜀
𝐴𝐴S(3)

𝑑𝑑S(3)
=  𝜀𝜀

𝐴𝐴S(3)

𝑑𝑑(3)BPx + ∆𝑑𝑑(3)RM + ∆𝑑𝑑(3)BCG
, (4) 

where d(3)BPx is the distance between the upper body and outer 
electrode (3) determined by the lying or rising posture. The 
distance changes ∆d(3)RM and ∆d(3)BCG are caused by 

 
(a) cECG measurement 

 

 
(b) Measurement of BPx, LP, RM and BCG 

 
Fig. 2. Schematic of the capacitive couplings associated with the 
measurement principle of the proposed approach. The couplings consist of 
the volume conductor of the lying subject, insulating materials (bed sheet 
and clothes worn by the subject), and the conductive fabric in the FUSE. 
(a) Couplings related to cECG measurement. The heart represents a 
voltage source in the volume conductor, which generates voltages vECG(1) 
and vECG(2) via the couplings. The cECG is the potential difference 
between vECG(1) and vECG(2). (b) Couplings involved in the BPx, RM, and 
BCG measurements. The series connections of CS(3) and CG, and CS(4) and 
CG are incorporated in the astable multivibrator circuits, resulting in 
square pulses vS(3) and vS(4), respectively. The frequencies of vS(3) and vS(4) 
depend on the combined capacitances of CS(3) and CG, and CS(4) and CG, 
respectively. 
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respiration-associated chest movements and 
ballistocardiographic displacement, respectively. Substituting 
(4) into (3), we obtain  

 𝑉𝑉out(3) ≅
𝑘𝑘fv𝑘𝑘osc
𝑅𝑅3𝜀𝜀

 ∙
𝑑𝑑(3)BPx + ∆𝑑𝑑(3)RM + ∆𝑑𝑑(3)BCG

𝐴𝐴S(3)
. (5) 

When a subject’s upper body moves up or down (e.g., when 
entering or exiting the bed), the change in d(3)BPx dominates 
∆d(3)RM and ∆d(3)BCG. Under this condition, the output voltage 
Vout(3) is calculated as 

 𝑉𝑉out(3) ≈
𝑘𝑘fv𝑘𝑘osc
𝑅𝑅3𝜀𝜀

 ∙
𝑑𝑑(3)BPx 

𝐴𝐴S(3)
 

 ≡ 𝑉𝑉BPx_chest. (6) 
Note that (6) includes the coupling term AS(3). When the subject 
changes his/her body position to or from the lateral posture, the 
change in 1/AS(3) dominates d(3)BPx. Therefore, VBPx_chest reflects 
not only BPx, but also LP around the chest. 

 When the subject maintains a steady body posture, both 
d(3)BPx and AS(3) can be regarded as constants. The change in 
output voltage ∆Vout(3) is then sensitive to ∆d(3)RM and ∆d(3)BCG 
and can be expressed as follows: 
 ∆𝑉𝑉out(3) ∝

𝑘𝑘fv𝑘𝑘osc
𝑅𝑅3𝜀𝜀𝐴𝐴S(3)

 �∆𝑑𝑑(3)RM + ∆𝑑𝑑(3)BCG� 

 ≡ 𝑣𝑣𝑅𝑅𝑅𝑅_𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑣𝑣𝐵𝐵𝐶𝐶𝐵𝐵_𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒, (7) 
where vRM_chest and vBCG_chest are the components of ∆Vout(3) 
sensitive to RM and BCG, respectively, at the chest. As vRM_chest 
and vBCG_chest have different frequency components, they can be 
derived from their corresponding frequency filters (see the 
block diagram in Fig. 1(b)). The frequency bands of vRM_chest 
and vBCG_chest were set to 0.15–0.5 and 0.1–40 Hz, respectively.  

By considering the series-connected capacitors CBPx(4) and 
CG, we can similarly determine VBPx_abd, vRM_abd, and vBCG_abd, 
which are sensitive to BPx and RM, respectively, at the 
abdomen (BPxabd and RMabd). 

IV. EXPERIMENTAL AND ANALYTICAL METHODS 
All experimental procedures were approved by the Human 

Life Ethics Committee of Tokyo Denki University. All subjects 
provided informed consent prior to participation in our 
experiments. The subjects were accepted onto the study if they 
had no prior medical history of cardiopulmonary or 
cardiovascular disease. The measuring system is shown in Fig. 
1(b). All signals obtained by the system were digitized at 1 kHz 
with 16-bit resolution, with a view to future precise analysis. 
The reference voltage was ± 10 V. All subjects wore 
commercially available nightwear made from 0.36-mm-thick 
cotton and slept on commercially available cotton bed sheets 
with a thickness of 0.33 mm. 

A. BPx Signals with Postural Changes and Their 
Classification 

As a fundamental evaluation of the proposed system, we 
measured the BPx signals at the chests (BPxchest) and abdomens 
(BPxabd) of seven subjects #A–#G (22–45 years old, 1.67–1.76 
m height, 50.0–83.0 kg weight, 18.0–23.3 kg/m2 in body-mass 
index (BMI)). The subjects were requested to change their LP 
sequentially on cue and to maintain each posture for 20 s. The 
postural sequence was sitting, supine, left lateral, supine, right 
lateral, supine, and sitting. The BPx signals recorded at each 
posture were divided into five segments, each with a duration of 

4 s. The voltages of the BPx signals at the chest (VBPx_chest) and 
abdomen (VBPx_abd) were averaged over each of the second, 
third, and fourth segments. Each chest–abdomen pair of mean 
voltages was considered as a two-dimensional datum and 
classified into one of three posture clusters (sitting, supine, or 
lateral) using a K-means clustering algorithm. The 
classification was performed for each subject and for all 
subjects together. The sensitivity (PSNS), accuracy (PACC) and 
positive predictive value (PPPV) of each cluster were calculated 
by (8), (9) and (10), respectively: 

 𝑃𝑃SNS = 𝑁𝑁TP 
𝑁𝑁TP+𝑁𝑁FN

× 100 (8) 
, 
 𝑃𝑃ACC = 𝑁𝑁TP+𝑁𝑁TN 

𝑁𝑁TP+𝑁𝑁TN+𝑁𝑁FP+𝑁𝑁FN
× 100, (9) 

and 
 𝑃𝑃PPV = 𝑁𝑁TP 

𝑁𝑁TP+𝑁𝑁FP
× 100, (10) 

where NTP, NTN, NFP, and NFN are the numbers of data correctly 
classified into the target cluster, correctly classified into other 
clusters, incorrectly classified into the target cluster, and falsely 
classified into other clusters, respectively. 

B. Evaluation of RM Signals 
We tested whether our system could measure RMs with 

different RRs in a single 24-year-old subject #H (1.71 m height, 
61 kg weight, 20.9 kg/m2 BMI) with three different LPs: supine, 
right lateral, and left lateral. Reference RM signals at the chest 
(RMref_chest) and abdomen (RMref_abd) were simultaneously 
measured by telemetric belt-type transducers (TSD201, 
BIOPAC Systems) and amplifiers (RESP100C, BIOPAC 
Systems). The transducers were worn on the subject’s chest and 
abdomen. This test involved only the detection of BPx and RM 
(Fig. 1(b)) because the transducer worn on the chest could lead 
to interference in the cECG measurement. First, the subject was 
asked to lie on the bed in a supine position. To verify the RR, 
the timing of breaths was synchronized with a metronome. The 
measurement lasted for 90 s at each of eight fixed RRs ranging 
from 10 to 30 respirations per minute. With the subject lying on 
the bed in the right- and left-lateral postures, the RM signals 
were tested in the same manner.  

The RM signals including reference signals were 
preprocessed by filtering twice through a digital bandpass filter 
(infinite impulse response filter, fc = 0.15–0.5 Hz). Discrete 
RM cycles in the RM signals were automatically detected by 
software with threshold processing [50]. The RR was 
calculated for each measurement by dividing the total duration 
of RMs in a 10.5-cycle recording by the detected number of 
RMs in the recording. We then calculated the correlation 
coefficients for the RRs determined using our new system and 
those determined by the commercial system used for the 
reference signal measurement for the chest and abdomen in 
three LPs.  

C. Multichannel Simultaneous Measurements in Each Body 
Posture  

A short test in which the cECG, BPxchest, BPxabd (i.e., RMchest 
and RMabd), and BCG signals were measured was performed on 
one 24-year-old subject #I (1.73 m height, 83 kg weight, 23.3 
kg/m2 BMI). First, the subject was asked to lie supine on the 
bed. Second, the subject was assigned the following sequence 
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of postures: left lateral, supine, right lateral, and supine. All 
postures were held for 50 s except for the last supine posture, 
which was held for approximately 60 s. Finally, the subject was 
asked to arise and sit on the bed. The body movements of the 
participants were verified by video recordings. 

D. Overnight Measurements  
Next, our proposed system was validated through 

experimental measurements of seven healthy male subjects #J–
#P (20–23 years old, 1.60–1.87 m height, 55.0–78.8 kg weight, 
20.9–26.6 kg/m2 BMI) during sleep. Reference Lead III ECG 
signals were measured by a commercially available ECG 
telemetry system (i.e., BN-RSPEC, BIOPAC Systems) and 
disposable electrodes (i.e., F-150S, Nihon Kohden). The 
reference RM signal at the abdomen (RMref_abd) was measured 
with the same telemetry system and a belt-type transducer 
(BN-RESP-XDCR, BIOPAC systems). In this experiment, the 
respiration transducer was worn only on the abdomen to avoid 
interference with the cECG measurement. Again, the body 
movements were verified by video recordings. Blood oxygen 
saturation (SpO2) was measured using a commercially 
available transducer (TSD123A, BIOPAC Systems) and a 
calculation module (OXY100C, BIOPAC Systems). For 
advanced analysis, a sheet-type sensor of a commercial 
screening device of sleep apnea syndrome (Sleep EYE GD700, 

GAC Co., Ltd., approved in Japan) was placed under the FUSE. 
A software supplied with the device can detect apnea/hypopnea 
episode and calculate apnea–hypopnea index (AHI). At the 
start of the measurements, volumetric humidity was set to 6–10 
g/m3. The duration of the experiment was at least 6 h, although 
only the data collected during the first 6 h were analyzed. The 
subjects were free to change body positions as they wished. The 
RM signals were preprocessed as described in Section IV-B. To 
allow comparison with the conventional system, the 
above-described subjects, test protocol, and preprocessing 
method of RM signals were set to be the same as described in a 
previous study [39].  

Also to allow comparison with the conventional system [39], 
the Q wave, R wave, and peak and end of the T wave (Ttop and 
Tend, respectively) for the reference ECG and cECG were 
detected by beat-by-beat pattern matching using the wavelet 
transform [51]. The R–R interval (RRI) was calculated from the 
two consecutive detected R waves. If the RRI of a cECG signal 
was within ±3 ms of the RRI of the reference ECG, the latter R 
wave of the cECG was deemed correctly detected. For the 
reference ECG, the Q–T interval (QTI) was calculated from the 
detected Q wave and Tend. Bazett compensation was performed 
on the QTIs obtained from the reference and our proposed 
system as the QTI is known to depend on RRI [52]. 
Subsequently, the mean (MN) and standard deviation (SD) of 
QTI was computed for the 6 h of analyzed data. For cECG, QTI 
was calculated from the Q wave of the reference ECG and 
detected Tend of the cECG. If the QTI of the cECG signal was 
within MN ± 1.96SD of the reference ECG, the T wave of the 
cECG was deemed correctly detected. The RM cycles were 
detected using the same software as described in Section IV-B. 
If the starting time of a detected RM cycle in our system was in 
between that of the reference signal, the RM cycle of our 
system was deemed correctly detected. The PSNS, PACC and PPPV 
of the ECG and RM signals were then calculated. 

We investigated correlations of ECG parameters (RRI and 
compensated QTI) and RRs (of RMchest and RMabd) between the 
reference and our new systems during 4th 1-hour segment in 
the 6-hour recording for all subject by using a Bland–Altman 
plot. For this analysis, correctly detected data (NTP) were only 
used. RRs were calculated by using reciprocal of the total 
duration of RMs in a 10-cycle window and by shifting the 
window in a breath-by-breath manner. 

We tested whether any decrease in RRI associated with sleep 
apnea or/and hypopnea could be detected in the cECG signals. 
Here, we referenced an autocorrelated wave-detection 
algorithm with adaptive threshold provided by Hayano et al. 

  
 

Fig. 3.  Cluster plots of VBPx_chest vs. VBPx_abd obtained from seven subjects 
#A-G. Clusters 1, 2, and 3 correspond to the supine position, right- or 
left-lateral position, and sitting position, respectively. Crosses mark the 
center of gravity of each cluster. Plots with overtyped letters x indicate 
incorrectly clustered plots.  

TABLE I 
SENSITIVITY (PSNS) [%], ACCURACY (PACC) [%] AND POSITIVE PREDICTIVE VALUE (PPPV) [%] FOR EACH BODY POSTURE 

Subject Sitting  Supine  Lateral 
PSNS PACC PPPV  PSNS

 PACC PPPV
  PSNS

 PACC PPPV
 

#A 100 100 100  100 100 100  100 100 100 
#B 100 100 100  100 100 100  100 100 100 
#C 100 100 100  100 100 100  100 100 100 
#D 100 100 100  66.7 75.0 66.7  50.0 87.5 100 
#E 100 100 100  100 100 100  100 100 100 
#F 100 100 100  66.7 75.0 66.7  50.0 75.0 50.0 
#G 100 100 100  88.9 81.8 72.7  50.0 83.3 75.0 
MN±SD 100±0.0 100±0.0 100±0.0  88.9±15.7 90.2±12.4 86.6±16.9  78.6±26.7 92.3±10.3 89.3±19.7 
All (A-G) 100 100 100  90.5 88.2 82.6  71.4 88.6 83.3 
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[53]–[55]. First, the recorded cECG signal was differentiated. 
The RRI time series X(t) were generated by interpolation with a 
spline function and resampling at 2 Hz [53]. Next, the RRI time 
series satisfying (11) were detected as candidate dips: 

 𝑋𝑋(𝑡𝑡) + ∆𝑒𝑒2 
49

≤ 𝑋𝑋(𝑡𝑡 + ∆𝑡𝑡), (−5 ≤ ∆𝑡𝑡 ≤ 5). (11) 
After calculating the depths and widths of all the candidate dips, 
we selected those with depth-to-width ratios exceeding 0.7 ms/s 
[54]. In addition, the upper and lower envelopes of the RRI 
variations were calculated as the 95th and 5th percentile points, 
respectively, within a shifting window with a width of 130 s 
[54]. Finally, we selected the dips with depths greater than 40% 
of the envelope range. The same analysis was performed on the 
reference ECG for comparison.  

V. RESULTS 

A. Classification of Body Posture 
Table I tabulates the classification PSNS, PACC and PPPV for 

each subject and for all subjects. The sitting postures and LPs 

  
 (a) Chest RM (b) Abdominal RM 
 
Fig. 4. Correlation between the respiratory rates (RRs) of subject #H 
measured by a commercial belt-type transducer and the proposed device. 
RRs were calculated from both the (a) chest and (b) abdominal respiratory 
movements (RMs). The RM intervals were regulated by and varied using a 
metronome. 

  
(a) Images of a subject and the corresponding signals recorded upon sequential postural changes. 

 

 
 (b) Enlarged cECG waveforms in different postures (c) Enlarged RM signals of the chest and abdomen in different postures 
 
Fig. 5. Simultaneous measurements of subject #I by the FUSE during resting with sequential postural changes. (a) Reference images of the subject lying on the 
bed and noncontact recordings of upper and lower BPxs, cECG, and RMs of the chest and abdomen. Body postures were measured over 30 s. (b) Enlarged 
cECG waveforms and (c) enlarged RM signals of the chest and abdomen corresponding to the dotted rectangular sections in the three body postures shown in 
(a). 
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were clearly classified in all subjects, and the supine and lateral 
postures were perfectly classified in four subjects. The 
classification results of all subjects are shown in Fig. 3. The 
central points in clusters 1, 2, and 3 describe the supine position 
(VBPx_chest = 3.0 V and VBPx_abd = 3.0 V), lateral position 
(VBPx_chest = 3.5 V and VBPx_abd = 5.0 V), and sitting position 
(VBPx_chest = 6.6 V and VBPx_abd = 8.4 V), respectively. The 
classification PACC were 88.2% for supine posture, 88.6% for 
lateral posture, and 100% for sitting posture. These results 
indicate that FUSE can provide BPx signals that clearly 
indicate the presence of the trunk of the subject (i.e., volume 
conductor). However, further improvement is needed to 
distinguish between supine and lateral postures (e.g., by 
combining the RM and cECG signals).  

B. RM Measurements on the Chest and Abdomen in Each LP 
Fig. 4 shows the correlation between RRs recorded by a 

respiration transducer and those measured using the proposed 
system on the chest and abdomen in the supine, right-lateral, 
and left-lateral postures. The correlation coefficient for the 
above three LPs on the chest were 0.97, 0.97, and 0.99, 
respectively, whereas those on the abdomen were 0.99, 0.93, 
and 0.98, respectively. In addition, root mean square errors 
(RMSEs) on the chest and abdomen were 1.60 and 1.99 rpm, 
respectively. These results confirm that our system adequately 
detected RMs on the chest and abdomen in three different LPs, 
even without band-type transducers worn on the body.  

C. Simultaneous Multichannel Measurement in Each LP 
Fig. 5(a) shows the continuous waveforms of the BPx, cECG, 

and RM signals in each body posture during the sequence of 
postural changes. The results confirm that our system measured 
all the above signals in all tested postures. The changes in LP 
produced noticeable changes in BPx voltage, cECG wave 
profile, and RM amplitude. Although periods of saturation 
immediately following rolling-over motions were observed in 
the cECG and RM signals, the baseline signals were restored in 
5 and 15 s, respectively. Regarding the cECG signal quality, a 
commercially available software (AcqKnowledge4.1, BIOPAC 
Systems) automatically recognized the P, QRS, and T waves in 
all LPs, as shown in Fig. 5(b). The RM shape was less distorted 
on the abdomen than on the chest, and the phases of RMchest and 
RMabd were in the reverse in both the supine and right-lateral 
postures, as shown in Fig. 5(c).  

D. Overnight Measurements  
Fig. 6 shows example recordings of cECG and RM signals 

from the proposed and reference systems in each LP obtained 
during overnight experiment for subject #J. The cECG and RM 
signals were synchronized with the simultaneously measured 
reference signals, respectively. Further, the P, QRS, and T 
waves in cECG were automatically recognized in all LPs as with 
Fig. 5(b) by the same software written in V-C.  

The PSNS, PACC and PPPV of each 6-h signal for each of the 
seven subjects are shown in Table II. The average PSNS, PACC 
and PPPV of cECG were 86.1%, 86.1% and 99.9% for the R 
wave and 88.0%, 83.8%, and 94.4%, respectively, for the T 
wave. The PSNS and PACC for subject #J were below 80%, much 
lower than those for the other subjects, because subject #J 
twisted and turned frequently in the bed, resulting drastic 
changes in the waveform and amplitude of the cECG signal. On 

    
 (a) Supine (b) Left lateral  (c) Right lateral 
Fig. 6. Recording of cECG/ECG and RM signals from the proposed system and the reference systems during overnight experiment for subject #1. Sections 
were selected when the subject was in the (a) supine, (b) left lateral, and (c) right lateral postures. 
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TABLE II 
SENSITIVITY (PSNS) [%], ACCURACY (PACC) [%], POSITIVE PREDICTIVE VALUE (PPPV) [%] AND THE NUMBER OF REFERENCE DATA (NTP+NFN) FOR THE R WAVE 

AND T WAVE OF CECG AND CHEST AND ABDOMINAL RMS 
 cECG  RM 

Subject R wave  T wave  NTP+NFN  Chest  Abdominal  NTP+NFN  PSNS PACC PPPV  PSNS
 PACC PPPV

   PSNS
 PACC PPPV

  PSNS
 PACC PPPV

  
#J 76.0 76.0 100  74.9 70.4 92.3  16,969  93.6 86.6 92.0  92.2 82.4 88.5  4,385 
#K 82.5 82.5 99.9  80.6 80.4 99.6  20,698  90.9 84.7 92.6  88.0 77.8 87.0  5,929 
#L 92.0 92.0 99.9  92.6 83.3 88.3  18,603  92.5 82.4 88.3  96.1 91.6 95.1  5,424 
#M 97.1 97.1 100  93.4 86.6 92.3  20,299  89.4 79.9 88.2  87.8 79.9 89.9  5,523 
#N 83.5 83.4 99.9  83.4 78.2 92.4  23,005  82.4 73.9 87.8  82.4 75.5 90.0  4,469 
#O 80.0 80.0 99.9  96.7 93.5 96.3  19,827  92.8 76.5 81.3  89.9 77.1 84.4  4,955 
#P 91.8 91.8 100  94.4 94.4 99.9  19,993  93.1 89.1 95.4  94.5 92.6 97.7  5,395 
MN 86.1 86.1 99.9  88.0 83.8 94.4  19,913  90.7 81.9 89.4  90.1 82.4 90.4  5,154 
SD ±7.6 ±7.6 ±0.1  ±8.3 ±8.5 ±4.3  ±1,858  ±3.9 ±5.5 ±4.5  ±4.6 ±7.0 ±4.6  ±573 
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the other hand, the PSNS (PACC, PPPV) of RMchest and RMabd were 
90.7% (81.9, 89.4%), and 90.1% (82.4, 90.4%), respectively. 
The PPPV of RMchest and RMabd for subject #O were below 85%, 
much lower than those for the other subjects, because the 
numbers of falsely detected of RMs were higher the other 
subjects. Since the subject #O reported nocturnal awakenings, 
the higher numbers of false detection were considered due to 
small body movements which were observed more frequently 
in his recordings than the other subjects.  

Fig. 7 shows correlation plots of RRI, QTI, and RRs between 
the reference and proposed systems, and their Bland-Altman 
plots for subject #J. Correlation coefficients and double SDs of 
RRI, QTI and RRs for all subjects are shown in Table III. Both 
correlation coefficients of RRI and QTI were more than 0.90 in 
all subjects, showing high degree of accuracy. Further, the 
estimated errors for these intervals of the proposed system were 
within ± 3 and ± 11 ms, respectively. The correlation 
coefficients of RRs also showed a high degree of accuracy (> 
0.90) with the exception of RMchest of subject #L. The both 
estimated errors for RRs of our system were within ± 2 rpm. 

Fig. 8 (a) shows the distinctive waveforms measured during 

sleep, including during the periods before and after presumed 
apnea and/or hypopnea. In the absence of apnea, hypopnea, and 
body movement, the waveforms of the cECG and RM signals 
were synchronized with the corresponding reference 
waveforms. However, around the occurrence of a body 
movement or breathing efforts associated with apnea or 
hypopnea involving a decrease in SpO2, the waveform of the 
RM signal desynchronized from that of the RMref signal. In 
these cases, time was required to resume synchrony.  

VI. DISCUSSION 

A. Examination of Postural Distinction 
The ability of our device to distinguish posture was 

evaluated in two experiments. Our system correctly classified 
the sitting postures of all subjects (Fig. 3 and Table I). The 
voltage was much higher in the sitting position than in the 
supine and lateral postures because the body was completely 
separated from the FUSE (see Fig. 5(a)). On the other hand, the 
lateral posture in subject #D was misclassified as supine, and 
the supine and lateral postures were confused in subjects #F and 

 
 
Fig. 7. Correlation plots of (a) RRI, (b) QTI, (c) RR on the chest and (d) RR on the abdomen between the reference and the proposed systems, and their 
Bland-Altman plots of (e) RRI, (f) QTI, (g) RR on the chest and (h) RR on the abdomen (Subject #J). All plots were calculated from a 4th 1-hour segment in the 
6-hour recording. Subscript “ref” or “pro” on the each parameter indicates that the parameter is obtained from the “reference” or “proposed” system. 

TABLE III 
CORRELATION COEFFICIENT (R) AND DOUBLE SD FOR RRI, QTI, RR DURING 4TH 1-HOUR SEGMENT IN THE 6-HOUR RECORDING 

Subject RRI  QTI  RR on the chest  RR on the abdomen 
r 2SD [ms]  r 2SD [ms]  r 2SD [rpm]  r 2SD [rpm] 

#J 1.00 1.74  0.95 5.16  0.96 0.53  0.92 0.79 
#K 1.00 2.11  0.93 9.38  0.94 1.02  0.96 0.81 
#L 1.00 1.98  0.93 10.49  0.85 1.03  0.94 0.62 
#M 1.00 1.46  0.94 7.00  0.96 1.08  0.94 0.90 
#N 1.00 2.69  0.96 7.33  0.96 1.53  0.94 1.75 
#O 1.00 2.45  0.96 6.25  0.90 1.22  0.93 1.01 
#P 1.00 2.82  0.98 7.24  0.92 0.78  0.98 0.41 
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#G. Since the SDs of VBPx_abd in the supine and lateral postures 
of subjects #D (0.27, 0.82 V) and #G (0.86, 1.24 V) were higher 
than in the other five subjects (0.08-0.15, 0.04-0.43 V), we 
consider repeatability of VBPx_abd value was low in these 
subjects. In subject #F, the SDs of VBPx_abd values in the supine 
and lateral postures (0.09, 0.15 V) were normal, but the MNs of 
VBPx_abd values in these postures (3.02, 3.09 V) were close each 
other and indistinctive. In the lateral posture, the coupling area 
AS(3) or AS(4) between the upper body and one of the outer 
electrode of FUSE is probably smaller than in the supine 
position. Because a decrease in AS(3) or AS(4) also decreases the 
coupling capacitance CBPx(3) or CBPx(4) (see (4)), the output 
voltage Vout(3) (i.e., VBPx_chest) or Vout(4) (i.e., VBPx_abd) should 
increase slightly (see (5) and (6)). However, magnitude 
relationship of VBPx_abd values between the supine and lateral 
positions was reversed in some segments of subjects #F and #G. 
This can be another reason for poor classification performance 
between the supine and lateral postures in subject #F and #G.  

Similar phenomena are observed in Fig. 5(a). In Fig. 5(a), 
VBPx_chest is larger in the second and third supine sequences than 
in the right- and left-lateral sequences; this behavior is not 
observed in the BPxabd signals in this subject. Possible 
contributing factor is the coupling of the outer electrode (3) to 
the brachium and forearm in the lateral positions. As seen in the 
reference image of the right-lateral position in Fig. 5(a), the 
position of the subject’s left elbow is closer to the shoulder line 
than in the supine positions. This might have increased the 
coupling area AS(3), resulting in a lower VBPx_chest in the lateral 
positions.  

Although our system correctly classified the sitting and lying 
positions, it should be further improved to distinguish among 

the various LPs. In the current model, the coupling capacitance 
in Fig. 2(b) assumes that CS(3) << CG. In contrast, the real 
electrode ratio is 27:1. Therefore, the detection PACC might be 
improved by narrowing the additional electrode. Using 
morphological information and cECG amplitude along with 
BPx signals might also be an effective to more accurately 
classify LPs. 

B. Ability to Detect BCG  
Fig. 9 shows the cECG and BCG signals that were measured 

simultaneously as described in Section IV-C. The wave pattern 
in Fig. 9(a) corresponds to section (x) of the initial supine 
position in Fig. 5(a). The BCG signal shows an apparent peak 
between the R and T waves of the cECG signal. Fig. 9(b) shows 
the wave pattern corresponding to section (y) of the third supine 
position (after four rolling movements). A similar peak in BCG 
following each cECG R wave can be confirmed in this wave 
pattern. A periodic peak with an amplitude of ~0.3 mV is also 
seen in the section corresponding to the second supine position 
(after two rolling movements) in Fig. 5(a) (not shown). These 
results imply that the proposed system is able to measure BCG 
signals in the supine position after slight positional changes 
resulting from repeated rolling. However, such peaks were not 
observed in the section corresponding to the lateral position, 
likely because the subject’s back separated from the FUSE in 
this posture, leaving only the shoulder coupled to the FUSE. In 
the lateral position, the upper outer electrode (3) shown in Fig. 
1(b) cannot easily measure BCG, whereas the lower outer 
electrode (4) retains the contact pressure between the body and 
the FUSE. Therefore, in a future work, we will use the lower 
outer electrode (4) to measure BCG in the lateral lying position.  

    
 (a) (b) 
 
Fig. 8. Representative overnight measurements of subject #J showing apnea and/or hypopnea episodes. (a) Discriminative recordings of BPx at the chest, 
cECG, and RMs of the chest and abdomen measured by the FUSE and simultaneously recorded reference signals of SpO2, ECG, and RM sensed by commercial 
measuring devices. cECGHPF is the cECG waveform filtered through a high-pass filter (cutoff frequency = 10 Hz). The RRIs calculated from cECGHPF and 
ECGref decreased significantly in the sections enclosed by the dotted rectangle. (b) Time series variation in SpO2 (upper panel), RRIs (middle panel), and 
smoothed RRIs (lower panel). The RRIs were calculated from cECGHPF and ECGref at the times of the SpO2 measurements and then interpolated with a spline 
function and resampled at 2 Hz. The smoothed RRIs were computed from the RRIs in the middle panel by a second-order polynomial fitting described in 
Hayano et al. [54]. Crosses and open circles in the smoothed RRIs were detected by the dip detection algorithm in Hayano et al. [54]. The sections enclosed by 
the rectangular dotted line match those in (a). 
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C. Evaluation of Overnight Measurements 
As shown in Table II, the PSNS and PACC of the R waves of 

cECG were identical for all subjects, and MN±SD of the PPPV 
was 99.9±0.1%. In other words, there was almost no false 
detection of R waves in the proposed system. On the other hand, 
the PPPV of the T wave was 5.5 percentage points lower on 
average than the R wave. The primary reason for the false 
detection of the T waves was the wave-like baseline variation in 
the right-lateral position, which can be seen in Fig. 5(b). Both 
the R and T waves were less accurately measured in subjects #J 
and #K than in the other subjects. In subject #J, the PACC was 
lowest during the first 2 h of measurement, when the cECG 
signal gradually changed, and its amplitude fluctuated between 
0.15 and 0.6 V. In subject #K, cECG detection became difficult 
when the amplitude diminished after a rolling-over movement. 
Since the SDs of PSNS and PACC of the cECG were higher than 
those of the RMs, we can presume more individual or 
posture-dependent varieties of cECG waveform than those of 
RMs waveforms. As shown in Fig. 5(a), the cECG signal 
responded to postural changes in our proposed system. 
Therefore, cECG was difficult to detect in some sections using 
the present analysis algorithm because of drastic changes in its 
amplitude and waveform. To properly detect the cECG signal 
in difficult situations, the software must be improved to deal 
with changing cECG signals. This will be addressed in a future 
work.   

In addition, one of the major factors that lowered detection 
performance of cECG was body movement. In previous work 
[56], we reported shortening of baseline restoration time of 
cECG from signal saturation after body movements by using 
driven seat ground (DSG) [57]. Therefor introduction of the 
DSG can be beneficial for the proposed system to mitigate 
influence of the body movements and to improve detection 
performance of cECG. 

 In the RM measurements of all subjects, the PACC was lower 
than the PSNS (see Table II). The least PPPV (81.3%) was found 
on the chest of subject #O, indicating a large number of false 
detections. One possible explanation for this discrepancy is the 
misclassification of baseline variation after a body movement 
as RM. Therefore, one of the next challenge to be addressed is 
to reduce influence of the body movements on RM detection by 
introducing some new methods such as singular spectrum 
analysis [58]. When comparing PACC between the chest and 
abdomen, the chest PACC was higher or lower than the 
abdominal PACC depending on the individual subject. This can 
reflect the different respiratory strategies of different 
individuals (i.e., chest respiration vs. abdominal respiration). 
Thus, it would be advantageous for the system to independently 
measure both chest and abdominal RMs.  

Fig. 10 compares the average RM PSNS and PACC of the 
proposed system and a conventional system [39]. All subjects 
participating in this test also participated in the overnight 
measurements performed in a previous study [39] and were 
assigned the same ID orders. The RM signals at the chest and 
abdomen were derived from the cECG signals in the 
conventional system, whereas they were derived from the BPx 
signals in the proposed system. The average PSNS on the chest 
and abdomen were approximately 14 and 10 percentage points 
higher, respectively, in the proposed system than in the 
conventional system (Fig. 10(a)). The greater PSNS in the 
proposed system was significant (p < 0.05 for both RMchest and 
RMabd, paired t-test). The RM PACC of the proposed system 
were approximately 11 and 8 percentage points higher on the 
chest and abdomen, respectively, compared to those of the 
conventional system (Fig. 10(b)). In the RMchest measurements, 
both the PSNS and PACC were higher for all subjects in the 
proposed system than in the conventional system. These results 
confirm the superiority of the proposed system over the 
conventional system in terms of RM measurement. 

D. Detection of Apnea and/or Hypopnea  
In a number of sections in the overnight test of subject #J, 

SpO2 decreased by more than 3% (see Fig. 8(a)). Since the 
result obtained from the apnea screening device showed 9.8 of 
AHI for this subject and detected multiple episodes of 
apnea/hypopnea in the segment shown in Fig. 8, the decreases 
in SpO2 were assumed to be caused by apnea and/or hypopnea. 
Video recordings in this segment revealed many body 
movements (e.g., rolling-over movements and neck/hand 
movements) after the decrease in SpO2. These body movements 
were measurable by the BPx signal in our proposed system.   

As shown in Fig. 8(a), the baseline cECG fluctuated around 
the periods of decreased SpO2; as a result, it was not clear 
whether the R wave was synchronized with the reference ECG 
wave (i.e., ECGref). In contrast, in the high-pass-filtered cECG 
signal (i.e., cECGHPF), the R waves were clearly visible, and 
RRI was easily calculated. Fig. 8(b) shows the time series of 
SpO2, RRI, and smoothed RRI during the presumed apnea 
and/or hypopnea episodes. The dotted rectangular sections (i) 
and (ii) in Fig. 8(b) correspond to those in Fig. 8(a). The time 
series of RRI in the cECG (RRIcECG) almost matches that in the 
ECGref (RRIref; see the middle panel of Fig. 8(b)). In Fig. 8(b), 
recurring dips in both RRIcECG and RRIref precede repetitive 
decreases in SpO2. This precedence can stem from a long delay 

 
(a) Section x in Fig. 5 

 

 
(b) Section y in Fig. 5 

 
Fig. 9. Enlarged example of cECGs and possible BCGs of subject #I 
measured simultaneously by the FUSE during rest with sequential postural 
changes. The waveforms in panels (a) and (b) correspond to time sections x 
and y in Fig. 5, respectively. The arrows in the lower parts indicate the 
possible BCG peaks associated with the R waves of the cECGs in the upper 
parts. 
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of SpO2 calculation algorithm (at least 8 s in the used module 
OXY100C). Using the automatic detection algorithm proposed 
by Hayano et al. [54], a total of 12 dips in RRI were detected in 
the 450-s segment of smoothed RRIref shown in Fig. 8(b) (see 
the bottom panel). In contrast, 11 of the 12 dips were detected 
in the smoothed RRIcECG at approximately the same times. 
Hayano et al. proposed an additional algorithm to compute the 
index of cyclic variation of heart rate (CVHRI) from the 
number of the dips and the time in bed [53]–[55]; they also 
proposed that CVHRI can be used in place of the apnea–
hypopnea index to indicate the severity of sleep apnea.  

 Before the reduction in SpO2, RMchest and RMabd were 
oppositely phased in Fig. 8(a). A preliminary test confirmed 
that when this subject ceased breathing, the amplitudes of 
RMchest and RMabd approached zero. In OSA, oppositely phased 
chest and abdominal movements are known to persist while the 
airflow through the airway is blocked [59]. Therefore, we 
concluded that our proposed system captured the opposite 
phase of breathing effort caused by obstructive apnea and/or 
hypopnea in Fig. 8(a). After the reduction in SpO2, the 
amplitudes of RMchest and RMabd became large and/or unstable, 
and the RMref behaved similarly. These behaviors may be 
explained by the body movements after effortful breathing. 
Because of the high sensitivity of the proposed system, the 
variation in amplitude was larger than RMref. 

The above results suggest that apnea and/or hypopnea 
episodes can be accurately detected by simultaneously 
measuring cECG, two types of RM (at the chest and abdomen), 
postural changes, body movements (e.g., rolling movements), 
and SpO2. Since our proposed system simultaneously measures 
all the above parameters except SpO2 without the attachment of 
transducers on the body in combination with a pulse oximeter, 
the proposed system might be applied in the detection of sleep 
apnea and/or hypopnea. 

VII. CONCLUSIONS AND FUTURE WORKS 
 This study proposed a noncontact system that simultaneously 
measures multiple physiological and behavioral signals in 
recumbent humans. Measurements are performed by the FUSE, 

a flexible sensor system that can be placed under the bedclothes. 
The performance of the proposed system was tested in both 
short-term and overnight experiments. The system accurately 
classified the sitting postures and LPs and measured the cECG 
and RM signals in the supine and right-/left-lateral postures. 
cECG, two kinds of BPx, and RM signals were measured 
simultaneously. These signals are expected to be 
simultaneously measured with BCG in the supine posture. In 
the overnight experiment, the proposed system achieved 
improvements of 10–14 percentage points and 8–11 percentage 
points in average PSNS and PACC of the RM signals, respectively, 
compared to the conventional system. Therefore, the proposed 
approach can be applied in to unobtrusively monitor 
physiological and behavioral signals in recumbent humans at 
night. In the cECG measurements, the waveform of the cECG 
responded to the posture of the sleeping subject. However, the 
PSNS and PACC of the cECG measurements during sleep were 
below 90%. To improve upon these results, the analysis 
algorithm must be improved to accommodate cECG variation 
and tested on more participants in future studies. 
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